REGULAR ARTICLE

Theoretical study on the mechanism of OH + HCNO reaction

Song Wang · Jian-Kang Yu · Da-Jun Ding · Chia-Chung Sun

Received: 24 November 2006 / Accepted: 23 January 2007 / Published online: 21 February 2007 © Springer-Verlag 2007

Abstract A detailed mechanistic study of the OH+ HCNO reaction, in which the products P_i with $i = 1, 2$, ... , **7** are involved, is carried out by means of CCSD(T)/ $6-311G(d,p)/B3LYP/6-311G(d,p)+ZPVE computation$ nal method to determine a set of reasonable pathways. It is shown that P_6 (CO+H₂NO) and P_3 (HNO +HCO) are the major product channels with a minor contribution from $P_5(NO + H_2CO)$, whereas the other channels for $P_1(H_2O+NCO)$, $P_2(NH_2+CO_2)$, $P_4(HCN+HO_2)$ and $P_7(CO + H_2 + NO)$ are less favorable. All these theoretical results are in harmony with experimental facts.

Keywords Reaction mechanism · Potential energy surface $(PES) \cdot$ Reaction $OH + HCNO$

1 Introduction

It is known that the fulminic acid HCNO, which can be synthesized by vacuum pyrolysis of 3-phenyl-4-oximinoisoxazol-5-(4H)-one as described in the literature [\[1](#page-8-0)[–3](#page-8-1)], has recently been identified as an important intermediate in NO-reburning processes for the reduction of NO_x pollutants from fossil-fuel combustion emissions [\[4](#page-8-2)]. In particular, the OH + HCNO reaction, identified as a crucial step, has been modeled [\[4](#page-8-2)] by means of the computational method at HL1 level [\[5](#page-8-3)] to give the potential

J.-K. Yu · D.-J. Ding

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, People's Republic of China

energy surface (PES) associated with an estimated rate constant $k = 3.32 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ with no temperature dependence. This valuable PES has been built up to give the reaction coordinate diagram that covers a number of pathways for the OH+HCNO reaction.

The first and direct experimental study of the OH+ HCNO reaction [\[6](#page-8-4)] has been carried out by the use of laser-induced fluorescence and IR diode absorption spectroscopy to give a temperature-dependent rate constant $k = 2.69 \pm 0.41 \times 10^{-12}$ exp [(750.2 ± 49.8)/*T*] cm³molecule⁻¹ s⁻¹ over the temperature range 298– 386 K, with a value $k = (3.39 \pm 0.3) \times 10^{-11}$ cm³ molecule^{-1} s^{-1} at 296 K. Through these measurements, the products of the OH+HCNO reaction

have been determined [\[6\]](#page-8-4), leading to the major product channels $P_6(CO + H_2NO)$ and $P_3(HNO + HCO)$, with a minor contribution from $P_5(NO + H_2CO)$. Note that the symbols $(3a)$, $(3b)$, ..., $(3g)$ are used in the literature [\[6](#page-8-4)].

It was pointed out [\[6\]](#page-8-4) that, for the reaction OH + HCNO, the PES [\[4\]](#page-8-2) covered the product channels $P_1(H_2O + NCO)$, $P_3(HNO + HCO)$ and $P_7(CO + H_2 +$ NO), but the study of product channels [\[4\]](#page-8-2) did not consider the possibility of the major channel P_6 (CO + H_2NO , which was investigated in the literature [\[6](#page-8-4)]; the mechanistic study [\[4](#page-8-2)] predicted that there was a

S. Wang · J.-K. Yu (⊠) · C.-C. Sun

State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China e-mail: yujk@jlu.edu.cn

Fig. 1 B3LYP/6-311G(d,p) optimized geometries for the reactantR(OH+HCNO) and the products $P_1(H_2O+NCO)$, $P_2(NH_2 + CO_2)$, **P3**(HNO+HCO), **P4**(HCN+HO2), $P_5(NO+H_2CO)$, P_6 (CO+H₂NO), and $P_7(CO+H_2 + NO)$. Bond lengths are in angstrom and angles in degrees. Values in parentheses correspond from Ref. [\[8\]](#page-8-5). Values in square brackets correspond from Ref. [\[9\]](#page-8-6)

moderate yield of NCO-forming channel P_1 , but the experiments [\[6](#page-8-4)]; indicated that the formation of NCO might be at most a very minor pathway in the reaction; also, the mechanistic study [\[4\]](#page-8-2) predicted that the **P7** channel was a low-energy pathway to the product $(CO + H₂ + NO)$, but the observation of very low NO yields reported in literature [\[6\]](#page-8-4), suggested that the **P7** channel might not be a major one.

As mentioned above, a deeper understanding of the pathways involving the products P_1 , P_2 , ..., P_7 may be required. Therefore, a detailed mechanistic study for the OH+HCNO reaction is presented in this work by means of CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) +ZPVE computational method.

2 Computations methods

For the reaction OH + HCNO, all calculations are carried out using Gaussian 98 program packages [\[7](#page-8-7)]. The geometries of the reactants, products, intermediates, and

transition states are optimized using hybrid density functional B3LYP method with the $6-311G(d,p)$ basis set. To confirm that the transition states connects designated intermediates, we also perform intrinsic reaction coordinate (IRC) calculations at the B3LYP/6-311G(d,p) level. In addition, single-point calculations are performed at the CCSD(T)/6-311G(d,p) level for the B3LYP/ 6-311G(d,p) optimized geometries of all species. B3LYP/6-311G(d,p) zero-point vibrational energies (ZPVE) are included.

In order to make the contents discussed easier, let us introduce the most part of the optimized geometries for the reactant and products, the intermediates, and the transition states, respectively, as shown in Figs. [1,](#page-1-0) [2](#page-2-0) and [3.](#page-3-0)

Figure [1](#page-1-0) shows the B3LYP/6-311G(d,p) optimized geometries for the reactantR(OH+HCNO) and the products $P_1(H_2O + NCO)$, $P_2(NH_2 + CO_2)$, $P_3(HNO +$ HCO), $P_4(HCN + HO_2)$, $P_5(NO + H_2CO)$, $P_6(CO +$ H_2NO , and $P_7(CO + H_2 + NO)$.

Fig. 2 B3LYP/6-311G(d,p) optimized geometries for intermediates. And most of the six-atom intermediates are isomers, i.e., the isomers a_1 and a_2 characterized by HC(OH)NO, the isomer a_3 by HCNOOH and the isomers c_1 , c_2 , c_3 , and c_4 by HC(O)NOH. The intermediate b_1 takes the form **b1**(HC(O)N(O)H). Also, the four-atom intermediates, HNOH, HCOH and OCNO are presented. Bond lengths are in angstroms and angles in degrees. Values in parentheses correspond from Ref. [\[8\]](#page-8-5)

Figure [2](#page-2-0) shows that the B3LYP/6-311 $G(d,p)$ optimized geometries for intermediates are described in detail, where most of the intermediates are isomers, i.e., the isomers \mathbf{a}_1 and \mathbf{a}_2 are characterized by HC(OH)NO, the isomer **a₃** by HCNOOH and the isomers c_1 , c_2 , c_3 , and c_4 by HC(O)NOH. The intermediate b_1 takes the form b_1 (HC(O)N(O)H). Also, the intermediates which are composed of four atoms such as HNOH, HCOH and OCNO, are presented in Fig. [2.](#page-2-0)

Figure [3](#page-3-0) shows the B3LYP/6-311G(d,p) optimized geometries for transition states. In Fig. [3,](#page-3-0) there are 13 transition states, which are composed of six atoms, denoted by

a_1/a_2 , a_1/b_1 , a_2/c_1 , $a_1/3$, a_3/P_4 , $b_1/1$, b_1/P_3 , b_1/P_6 , c_1/c_2 , c_2/c_3 , c_3/P_1 , c_2/c_3 , $c_4/4$

where the symbol **x**/**y** is used to denote the transition states, in which **x** and **y** are the corresponding intermediates or products, and where the symbols **1**, **2**, **3**, and **4** are used to denote the species, which are put in the parenthesises, by writing

 $1(CO + HNOH)$, $2(CO + NH₂ + O)$, $3(NO + HCOH)$, $4(H_2 + OCNO)$.

Alternatively, we still have three transition states defined as **1**/**P6**, **3**/**P5** and, **4**/**P7**, which can be expressed, respectively, in terms of the four-atom transition states $HNOH/H₂NO, HCOH/H₂CO, and OCNO/(CO + NO),$ i.e.,

$$
1/P_6 = 1(CO + HNOH)/P_6(CO + H_2NO)
$$

= CO + HNOH/H₂NO

$$
3/P_5 = 3(NO + HCOH)/P_5(NO + H_2CO)
$$

= NO + HCOH/H₂CO

$$
4/P_7 = 4(H_2 + OCNO)/P_7(H_2 + CO + NO)
$$

= H₂ + OCNO/(CO + NO)

We shall see later that the three molecules CO, NO and H_2 in $1/P_6$, $3/P_5$ and $4/P_7$ will keep unchanged, respectively, in the sub-processes $1 \rightarrow P_6$, $3 \rightarrow P_5$ and $4 \rightarrow P_7$.

Also, Table [1](#page-4-0) lists the theoretical prediction of the total energy, and the relative energies for the reactant, products, intermediates and transition states at different levels of theory.

3 Results and discussion

The potential energy surface (PES) involving the main structures of the OH+HCNO reaction calculated at the $CCSD(T)$ /6-311G(d,p)//B3LYP/6-311G(d,p)+ZPVE level is shown in Fig. [4,](#page-5-0) where the optimized geometries of the reactant together with the products, the intermediates and the transition states, respectively, are shown

Fig. 3 B3LYP/6-311G(d,p) optimized geometries for transition states. The 13 six- atom transition states are denoted as **a**₁/**a**₂, **a**₁/**b**₁, **a**₂/**c**₁, **a**₁/**3**, **a**₃/**P**₄, **b**₁/**1**, **b**₁/**P**₃, **b**₁/**P**₆, **c**₁/**c**₂, **c**₂/ **c₃**, c_3/P_1 , c_2/c_3 , $c_4/4$, where the 1, 2, 3 and 4 species are defined as **1**(CO + HNOH), **2**(CO + NH2 + O), **3**(NO + HCOH) and $4(H_2+OCNO)$, and where the symbol x/y is used to denote the transition states, in which **x** and **y** are the corresponding intermediates or products. There are 3 transition

states defined as $1/P_6 = 1(CO + HNOH)/P_6(CO + H_2NO)$ $CO + HNOH/H_2NO$, $3/P_5 = 3(NO + HCOH)/P_5(NO + H_2CO) =$ $NO + HCOH/H_2CO$ and $4/P_7 = 4(H_2 + OCNO)P_7/(H_2 +$ $CO + NO$) = H₂ + OCNO/(CO + NO), where HNOH/H₂NO, HCOH**/**H2CO, and OCNO**/**(CO + NO) are the four-atom transition states. Bond lengths are in angstroms and angles in degrees. Values in parentheses correspond from Ref. [\[8\]](#page-8-5).

Table 1 Theoretical predication of the total energy (Hartree), ZPVE (Hartree/ particle), and relative energies ΔE (kcal/mol) for reactant, products, intermediates and transition states of the OH+HCNO reaction at different levels of theory

Species	Total energy		ZPVE	$\Delta E/(kcal/mol)$
	B3LYP/6-311G(d,p)	$CCSD(T)/6-311G(d,p)$	$B3LYP/6-311G(d,p)$	$CCSD(T)/6-311G(d,p)$
$R(OH+HCNO)$	-244.3771296	-243.8030137	0.027886	0.0
$P_1(H_2O+NCO)$	-244.4974039	-243.9277656	0.029973	-76.9735
$P_2(NH_2 + CO_2)$	-244.5362062	-243.968428	0.029072	-103.055
P_3 (HNO+HCO)	-244.3955063	-243.8320645	0.026776	-18.9262
$P4(HCN+HO2)$	-244.4024152	-243.8344311	0.028807	-19.1368
$P_5(NO+H_2CO)$	-244.4630436	-243.9005305	0.031017	-59.228
P_6 (CO+H ₂ NO)	-244.1627996	-243.9093631	0.031469	-64.4869
$P_7(CO+H_2 + NO)$	-244.4525086	-243.9012879	0.019651	-66.8356
$1(CO+HNOH)$	-244.4618077	-243.901684	0.032102	-59.271
$2(CO+NH2+O)$	-244.3267153	-243.7812419	0.023927	11.17771
$3(NO+HCOH)$	-244.3788034	-243.8183999	0.031241	-7.5497
$4(H_2+OCNO)$	-244.4294518	-243.8478044	0.023108	-31.1049
a ₁	-244.4699493	-243.8890495	0.036989	-48.2761
a ₂	-244.47236	-243.8918402	0.037351	-49.8001
a ₃	-244.3371774	-243.7609565	0.033346	29.81752
$b1$	-244.4975159	-243.9174644	0.037442	-65.8225
c ₁	-244.4820242	-243.9061369	0.037541	-58.6522
c ₂	-244.4747243	-243.8995379	0.037255	-54.6908
c ₃	-244.4765462	-243.9013819	0.036913	-56.0625
c ₄	-244.4681461	-243.8920467	0.036099	-50.7154
a_1/a_2	-244.4540737	-243.869792	0.035874	-36.8915
a_1/b_1	-244.4242973	-243.8414984	0.032225	-21.4268
$a_1/3$	-244.3886396	-243.8165175	0.032993	-5.26908
a_2/c_1	-244.4632921	-243.8858355	0.033711	-48.3163
a_3/P_4	-244.3362762	-243.7579024	0.031896	30.82411
$b_1/1$	-244.4215736	-243.8442636	0.030537	-24.2212
b_1/P_3	-243.0998673	-243.819822	0.031673	-8.171
b_1/P_6	-244.3651191	-243.7806862	0.031246	16.11916
c_1/c_2	-244.4487407	-243.8747683	0.034448	-40.909
c_2/c_3	-244.4601148	-243.8878048	0.036057	-48.0799
c_3/P_1	-244.3925294	-243.8114053	0.029865	-4.02397
c_3/c_4	-244.4498038	-243.8756942	0.034254	-41.6118
$c_4/4$	-244.4173204	-243.8354536	0.028348	-20.0665
$1/P_6$ (CO+HNOH/H ₂ NO)	-244.3869141	-243.8244449	0.025981	-14.6437
$3/P5(NO+HCOH/H2CO)$	-244.3238013	-243.7615882	0.02503	24.20275
$4/P7(H2 + OCNO/(CO+NO))$	-244.4175568	-243.8442877	0.021002	-30.2196

in Figs. [1,](#page-1-0) [2,](#page-2-0) and [3,](#page-3-0) and where the values of relative energies in the parentheses are taken from Table [1.](#page-4-0) Note that the symbol **x/y** is used to denote the transition state, where **x** and **y** are the corresponding intermediates or products.

3.1 The scanned procedure for the starting step $R \rightarrow a_1$

Now let us begin to discuss, as shown in PES, the step $R \rightarrow a_1$ which are taken as the common starting step for some pathways in the reaction OH + HCNO. Taking into consideration of the reactant $R(OH + HCNO)$ as starting point located at (0.0), an intermediate $a_1(HC(OH)NO)$ at (-48.3) is formed from attacking the carbon atom in HCNO by OH. It can be demonstrated, as shown in Fig. [5,](#page-5-1) by the dissociation curve with respect to the dissociation of the C–O bond in a_1 . And the starting step described by the scanned procedure just mentioned above is abbreviated as $R \rightarrow a_1$. Clearly, $R\rightarrow a_1$ is an energy rich step.

3.2 The pathways related to $R \rightarrow a_1$

Also, the PES shows that there are five pathways which acted as branches from a_1 , and it is sketched as follows:

 $R \rightarrow a_1 \rightarrow$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ \rightarrow **Path P**₁(H₂O + NCO) \rightarrow **Path P₃**(HNO + HCO) \rightarrow **Path P₅**(NO + H₂CO) \rightarrow **Path P₆**(CO + H₂NO) \rightarrow **Path P**₇(CO + H₂ + NO) $\mathbf l$ $\sqrt{ }$ \int **Fig. 4** The potential energy surface for the OH+HCNO reaction. The relative energies $\Delta E(kcal/mol)$, taken from Table [1,](#page-4-0) are calculated at the CCSD(T)/ 6-311G(d,p)//B3LYP/6- $311G(d,p) + ZPVE$ level. Values in parentheses correspond from Ref. [\[8](#page-8-5)]. The reactant and products, the intermediates and the transition states, respectively, are shown in Figs. [1,](#page-1-0) [2](#page-2-0) and [3.](#page-3-0) The origin of the energy is −243.7751277 Hartree

Fig. 5 The dissociation curve with respect to the dissociation of the C–O bond in the isomer $a_1 \rightarrow R$ at the B3LYP/6-311G(d,p) level. The origin of the energy is −244.3771296 Hartree

We shall proceed subsequently to the discussions, in which the pathways P_6 , P_3 , P_5 , P_1 and P_7 are involved, to give that both pathways P_6 and P_3 are the major channels, the pathway P_5 the minor one, while the other two pathways P_1 and P_7 at most the very minor channels.

3.3 A common division $R \rightarrow b_1$ of the pathways P_6 and **P3**, the major channels

In order to make our discussion easier, let us use the symbol $R \rightarrow b_1$ to denote the common division of the pathways P_6 and P_3 , such that

$$
\begin{array}{l}R\!\!\rightarrow\!\!{\bf b_l}:\\ \!\!\!\!\!R\left(OH\!\!+\!\mathrm{HCNO}\right)\!\rightarrow\!\!{\bf a_l}\left(\mathrm{HC}(OH)\mathrm{NO}\right)\!\rightarrow{\bf a_l}/{\bf b_l}\\ \scriptscriptstyle{(0,0)}\\ \!\!\rightarrow{\bf b_l}\left(\mathrm{HC}(O)\mathrm{N(O)H}\right)\\ \scriptscriptstyle(-65.8)\end{array}
$$

where a_1/b_1 , as shown in Fig. [3,](#page-3-0) is a four-center transition state connected with the complexes a_1 and b_1 . Via the transition state a_1/b_1 , the hydrogen atom H in $a_1(HC(OH)NO)$ migrates from the place, where the O–H bond is cleaved, to link with the intramolecular N to produce **b**₁.

From the relative energies listed in the parentheses in $\mathbb{R} \rightarrow \mathbf{b_1}$, it is easily seen that the energy rich step $\mathbb{R}(0.0)$ $\rightarrow a_1(-48.3)$ can help the sub-process $a_1(-48.3) \rightarrow$ $a_1/b_1(-21.4) \rightarrow b_1(-65.8)$ to proceed easily via the fourcenter transition state a_1/b_1 . Obviously, the division $R \rightarrow b_1$ is also an energy-rich step, where the step means, in essence, a section.

3.4 Pathway P_6 , a major product channel

The PES in Fig. [4](#page-5-0) shows that the pathway P_6 takes the common division $R \rightarrow b_1$ as starting to give

Path P_6 : $R\rightarrow b_1\rightarrow b_1/1\rightarrow 1(CO+HNOH)\rightarrow 1/P_6$

(0.0)(-65.8)(-24.2) (-59.3) (-59.3) $=$ CO + HNOH/H₂NO \rightarrow **P₆** (CO + H₂NO) (-14.6) (-64.5)

where the CO molecule keeps unchanged in the subprocess $1 \rightarrow P_6$. It is clear that the barriers of the transition state $1/P_6 = CO + HNOH/H_2NO$ associated with $1(CO + HNOH)$ and $P_6(CO + H_2NO)$ are identical with those of the four-atom transition state $HNOH/H₂NO$ associated with HNOH and H_2 NO. Via the four-atom transition state HNOH/H2NO, the hydrogen atom H in HNOH migrates from the place, where the O–H bond is cleaved, to link with the intramolecular N to produce $H₂NO$.

As shown in **Path** P_6 , there is also a loose four-center transition state $\mathbf{b}_1/1$, as shown in Fig. [3,](#page-3-0) at (-24.2), and it possesses six atoms. Via the transition state $\mathbf{b}_1/1$, the intermediate $\mathbf{b}_1(\text{HC}(O)\text{N}(O)\text{H})$ is decomposed into two parts CO and HNOH denoted by $1(CO + HNOH)$, due to the two bonds $N-C$ and $C-H$ in b_1 split.

To examine the relative energies listed in the pathway P_6 , we are led to the energy-rich division $R(0.0) \rightarrow b_1$ (−65.8) in **Path P6** can promote the sub-process **b**₁(−65.8)→**b**₁/**1**(−24.2) → **1**(−59.3) → **1**/**P**₆(−14.6) → **P₆**(−64.5) to proceed in easy way and it is energetically feasible, so that the Path P_6 is a major product channel.

It seems redundant to give a comparison of the pathway P_6 to some others, and then to come to the prediction that the Path P_6 is a major product channel, since this prediction has already been proposed and tested by the first and direct experimental observation reported in the literature [\[6](#page-8-4)].

Alternatively, an another pathway P'_6 is suggested as follows:

Path
$$
P'_6 : R \rightarrow b_1 \rightarrow b_1/P_6 \rightarrow P_6
$$

(0.0)(-65.8)(16.1)(-64.5)

where $\mathbf{b}_1/\mathbf{P}_6$ is a three-center transition state, as shown in Fig. [3,](#page-3-0) composed of six atoms. Since the relative energy of the transition state $\mathbf{b}_1/\mathbf{P}_6$ is located at (16.1) over that of the reactant R at (0.0) , this may make the **Path** P'_6 less favorable than the Path P_6 .

3.5 Pathway P_3 , a major product channel

By taking the common division $R \rightarrow b_1$ as starting, it is easy to write down, from the PES as shown in Fig. [4,](#page-5-0) the **path P₃** in the form

$$
\mathbf{Path}\ \mathbf{P_3}: \ \mathbf{R}{\rightarrow}\ \mathbf{b_1}{\rightarrow}\ \mathbf{b_1}/\mathbf{P_3}{\rightarrow}\ \mathbf{P_3}\ (HNO{+}HCO)\\ (0.0)(-65.8)(-8.2)\\ (-18.9)
$$

where, as shown in Fig. [3,](#page-3-0) the transition state $\mathbf{b}_1/\mathbf{P}_3$ at (−8.2) possesses a loose C··· N bond with bond length 2.208 Å to join the two groups HCO and HNO like $HC(O) \cdots N(O)H$. Via the transition state b_1/P_3 , the intermediate $\mathbf{b}_1(\text{HC}(O)\text{N}(O)\text{H})$ is decomposed into two parts HCO and HNO to produce the product **P3** $(HNO+HCO)$, due to the C–N bond in **split.**

It is worth to examine, in Path P_3 , the relative energies of the sub-process from \mathbf{b}_1 to \mathbf{P}_3 , which are placed after the common division $R \rightarrow b_1$, to give that the energy rich division R(0.0) \rightarrow **b**₁(−65.8) can help the sub-process **b1**(−65.8)→**b1**/**P3**(−8.2)→**P3**(−18.9) to go forward to the product P_3 in easy manner, so that the pathway **P3** is also a major product channel. And it is in

harmony with the experimental result reported in the literature [\[6](#page-8-4)].

3.6 Pathway P_5 , a minor product channel

The PES in Fig. [4](#page-5-0) shows that the pathway P_5 takes the form

Path P₅:
\n
$$
R(OH+HCNO) \rightarrow a_1(HC(OH)NO) \rightarrow a_1/3 \rightarrow 3(NO+HCOH)
$$
\n
$$
\xrightarrow{(0.0)} \xrightarrow{(-48.3)} \xrightarrow{(-5.3)} \xrightarrow{(-7.5)} \xrightarrow{(7.5)} \xrightarrow{(24.2)} \xrightarrow{(24.2)} \xrightarrow{(25.2)} \xrightarrow{(-5.9.2)}
$$

where HCOH and H_2CO H_2CO H_2CO are shown in Figs. 2 and [1,](#page-1-0) respectively. Note that the NO molecule keeps unchanged in the sub-process $3 \rightarrow P_5$.

In Path P_5 , the transition state a_1 [3](#page-3-0) in Fig. 3 at (−5.3) is a loose molecular species to join the two groups HCOH and NO through a loose $C \cdots N$ bond with bond length 2.285 Å . Via the transition state $a_1/3$, the intermediate **a**₁(HC(OH)NO) is decomposed into two parts NO and HCOH denoted as **3**(NO+HCOH), due to the C–N bond in **a₁** split.

Also in **Path P₅**, the transition state $HCOH/H₂CO$ in Fig. [3](#page-3-0) is a three-center transition state associated with HCOH and $H₂CO$. It is obvious that the barriers of the transition state $HCOH/H₂CO$ associated with $HCOH$ and $H₂CO$ are identical with those of the transition state $3/P_5$ = NO+HCOH/H₂CO associated with **3**(NO+HCOH) and $P_5(NO+H_2CO)$. Via the transition state $HCOH/H₂CO$, the hydrogen atom H in $HCOH$ migrates from the place, where the O–H bond is cleaved, to link with the intramolecular C to produce H_2CO .

To examine the relative energies in Path **P5**, it can be seen that the energy-rich step $R(0.0) \rightarrow a_1(-48.3)$ can promote the sub-process $\mathbf{a}_1(-48.3) \rightarrow \mathbf{a}_1/3(-5.3) \rightarrow$ **3**(NO+ HCOH)(−7.5) to proceed without difficulty. Let us consider the subsequent steps **3**(NO+HCOH)(−7.5) →**3**/**P5**(24.2)→**P5**(NO + H2CO)(−59.2). Note that the relative energy of the transition state $3/P_5$ at (24.2) is over that of the reactant R at (0.0) . Since the relative energy of $3/P_5$ at (24.2) is not so high, it seems that the temperature factor can help to bring about the sub- $\text{process } 3(\text{NO} + \text{HCOH})(-7.5) \rightarrow 3/\text{P}_5(24.2) \rightarrow \text{P}_5(\text{NO} +$ H2CO)(−59.5) to approach the product **P5**. Indeed, a temperature-dependent rate constant $k = 2.69 \pm 0.41 \times$ 10^{-12} exp [(750.2 ± 49.8)/*T*] cm³molecule⁻¹ s⁻¹ over the temperature range 298–386 K has been obtained via the experimental study of the $OH + HCNO$ reaction [\[6](#page-8-4)]. And it enables us to believe that the pathway P_5 may be a minor product channel, and this prediction is in harmony with the experimental result reported in the literature [\[6](#page-8-4)].

3.7 Pathways of P_1 and P_7

From the PES in Fig. [4,](#page-5-0) the pathway $P_1(H_2O + NCO)$ takes the form, by writing,

Path P₁:
\n
$$
\begin{array}{ccc}\n0 & 1 & 2 & 3 & 4 \\
R \rightarrow \mathbf{a}_1 \rightarrow \mathbf{a}_1/\mathbf{a}_2 \rightarrow \mathbf{a}_2 \rightarrow \mathbf{a}_2/c_1 \rightarrow \mathbf{c}_1 \\
(0.0) & (-48.3) & (-36.9) & (-49.8) & (-48.3) & (-58.7) \\
6 & 7 & 8 & 9 & 10 \\
6 & 7 & 8 & 9 & 10 \\
-40.9 & (-54.7) & (-48.1) & (-56.1) & (-4.0) \\
& & & & & \\
\rightarrow P_1(H_2O + NCO) & & & & \\
& & & & \\
\hline\n& & & & \\
\end{array}
$$

where the reactant $R(OH + HCNO)$ together with the product $P_1(H_2O + NCO)$, the intermediates (a_1, a_2, c_1) , c_1 , c_3), and the transition states $(a_1/a_2, a_2/c_1, c_1)$ \mathbf{c}_1 , $\mathbf{c}_2/\mathbf{c}_3$, $\mathbf{c}_3/\mathbf{P}_1$, respectively, are shown in Figs. [1,](#page-1-0) [2,](#page-2-0) and [3.](#page-3-0) By inspecting and comparing the relative energies from R to P_1 , we may get the information that the pathway P_1 is a low-energy channel. But the complicated situation of the 11 steps involved in the pathway $P_1(H_2O+NCO)$ may make the channel progressing uneasy. The experiments [\[6](#page-8-4)] indicated that the formation of NCO might be at most a very minor channel in the OH+HCNO reaction.

Now let us discuss the pathway $P_7(H_2 + CO + NO)$ and it can be written, from PES in Fig. [4,](#page-5-0) as

Path P7 :
\n
$$
\begin{array}{ccc}\n0 & 1 & 2 \\
R \rightarrow \mathbf{a_1} & \rightarrow \mathbf{a_1/a_2} \rightarrow \mathbf{a_2} & \rightarrow \mathbf{a_2/c_1} \rightarrow \mathbf{c_1} \\
(0.0) & (-48.3) & (-36.9) & (-49.8) & (-48.3) & (-58.7) \\
6 & 7 & 8 & 9 & 10 \\
\rightarrow \mathbf{c_1/c_2} \rightarrow \mathbf{c_2} & \rightarrow \mathbf{c_2/c_3} \rightarrow \mathbf{c_3} & \rightarrow \mathbf{c_3/c_4} \\
(-40.9) & (-54.7) & (-48.1) & (-56.1) & (-41.6) \\
\rightarrow \mathbf{c_1} & \rightarrow \mathbf{c_4/4} \rightarrow 4(\mathbf{H}_2 + OCNO) & \\
 & (-50.7) & (-20.1) & (-31.1) & \\
\rightarrow 4/P7 = \mathbf{H}_2 + OCNO/(CO + NO) \rightarrow P7(CO + H_2 + NO) & \\
 & (-30.2)\n\end{array}
$$

Note that the H_2 molecule keeps unchanged in the sub-process $4 \rightarrow P_7$. Let us discuss the transition states, etc. that are not appearing in Path **P1**. In Path **P7**, the transition states c_3/c_4 , $c_4/4$ and OCNO/(CO+NO) in **4**/**P7** are shown in Fig. [3,](#page-3-0) where the intermediates **c4** and OCNO are shown in Fig. [2.](#page-2-0) It is easily seen that the pathway P_7 possesses 15 steps from R to P_7 . By comparing the pathway P_7 with the pathway P_1 , it is easy to find that the two pathways possess the same steps from R to **c3**, i.e., nine steps and, for the purpose of comparison, the difference in steps are also given as follows:

for **Path** P_1 :

$$
\underset{(-56.1)}{\text{c}_3} \rightarrow \underset{(-4.0)}{\text{c}_3/P_1} \rightarrow P_1(\mathrm{H_2O}{+}NCO)
$$

for **PathP7** :

$$
\begin{array}{rcl}\n\mathbf{c_3} & \rightarrow \mathbf{c_3/c_4} \rightarrow & \mathbf{c_4} \rightarrow & \mathbf{c_4/4} \rightarrow & \mathbf{4} \\
\hline\n\text{(–56.1)} & \text{(–41.6)} & \text{(–50.7)} & \text{(–20.1)} & \text{(–31.1)} \\
\rightarrow & \mathbf{4/P_7} \rightarrow \mathbf{P_7}(\text{CO} + \text{H}_2 + \text{NO}) \\
\text{(–30.2)} & \text{(–66.8)}\n\end{array}
$$

The same and the difference in steps just mentioned above may indicate that the pathway $P_7(CO+H_2+NO)$ is also a low-energy channel, but it is in the manner more less favorable like that of the pathway $P_1(H_2O+NCO)$ exhibited. As reported in the literature [\[6](#page-8-4)], the experiment observed very low NO yields.

3.8 Pathway P4

From PES in Fig. [4,](#page-5-0) it is easy to write down the pathway **P4** in the form

Path P₄:
\n
$$
R(OH+HCNO) \rightarrow a_3(HCNOOH) \rightarrow a_3/P_4
$$
\n(0.0)
\n(0.0)
\n(29.8)
\n(30.8)
\n(30.8)
\n(30.8)

The scanned procedure for the first step from R at (0.0) to a_3 at (29.8) is shown in Fig. [6,](#page-8-8) that is the dissociation curve with respect to the dissociation of the O–O bond in **a3**(HCNOOH). Since the relative energy of **a3** at (29.8) is very close to that of the transition state a_3/P_4 at (30.8), $R \rightarrow a_3 \rightarrow a_3/P_4$ can approximately be regarded as one step $R \rightarrow a_3/P_4$ to have a high barrier, about 30.8 kcal/mol needed to overcome. It was reported in the literature [\[6](#page-8-4)] that pathways to other product channels, such as $P_4(HCN+HO_2)$, were predicted to have high energy barriers.

3.9 Pathway P2

As shown in PES in Fig. [4,](#page-5-0) there is a possible way involving a few steps, i.e., through the pathway P_6 , across the intermediates $2(CO + NH₂ + O)$ and down to the product $(H_2N + CO_2)$, such that

Path P2 : $R \rightarrow P_6(CO + H_2NO) \rightarrow 2(CO + H_2N + O) \rightarrow P_2(H_2N + CO_2)$
 (11.2) (-103.1) (-64.5) (11.2)

where the notation $R \rightarrow P_6$ stands for the pathway **P6**, and it is a major product channel, as illustrated in Sect. 3.4, to have the product $P_6(CO + H_2NO)$ in a steady manner so that the product P_6 does not possess enough energy about 75.7 kcal/mol to cross the intermediates $2(CO + H_2N + O)$ to produce the product

Fig. 6 The dissociation curve with respect to the dissociation of the O–O bond in the isomer $a_3 \rightarrow R$ at the B3LYP/6-311G(d,p) level. The origin of the energy is −244.3771296 Hartree

 $P_2(NH_2 + CO_2)$, via $CO + O \rightarrow CO_2$. For brevity, the scanned procedure with respect to $P_6 \rightarrow 2$ is omitted here.

4 Conclusions

All calculations in the present work are carried out using Gaussian 98 program packages [\[7](#page-8-7)] and the practical computations are performed by means of CCSD(T)/ 6-311G(d,p)//B3LYP/6-311G(d,p) + ZPVE.

For the reaction OH + HCNO, the PES, in which there are seven pathways from P_1 to P_7 involved, is built up to show the product channels whether to proceed in the energetically favorable or less or unfavorable manner. It is shown that both pathways $P_6(CO + H_2NO)$ and P_3 (HNO + HCO) are energetically favorable and they are of, by experiments, the major channels; the pathway $P_5(NO + H_2CO)$ is the less favorable and it is of, by experiments, the minor one; the two pathways $P_1(H_2O + NCO)$ and $P_7(CO + H_2 + NO)$ are the more less favorable and, by experiments, they are at most the very minor channels; the pathways $P_4(HCN + HO_2)$ and $P_2(NH_2 + CO_2)$, which possess high barriers needed to overcome, proceeded uneasily, and they are energetically unfavorable.

The above theoretical results are in harmony with the first and direct experimental observations [\[6\]](#page-8-4), in the study of reaction OH + HCNO, by means of laserinduced fluorescence and IR diode absorption spectroscopy.

Acknowledgements This work is supported by the National Natural Science Foundation of China (No. 20333050) and the postdoctoral fellowship of Jilin University.

References

- 1. Pasinszki T, Kishimoto N, Ohno K (1999) J Phys Chem 103:6746
- 2. Wentrup C, Gerecht B, Briehl H (1979) Angew Chem Int Ed Engl 18:467
- 3. Wilmes R, Winnewisser M (1993) J Labelled Compd Radiopharm 33:157
- 4. Miller JA, Klippenstein SJ, Glarborg P (2003) Combust Flame 135:357
- 5. Miller JA, Klippenstein SJ (2003) J Phys Chem A 107:7783
- 6. Feng WH, Meyer JP, Hershberger JF (2006) J Phys Chem A 110: 4458
- 7. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 98, revision A.11; Gaussian, Pittsburgh
- 8. Sumathi R, Sengupta D, Nguyen MT (1998) J Phys Chem A 102:3175
- 9. Lide DR (2003) CRC Handbook of chemistry and physics, 84th ed. CRC, Boca Reton